4 research outputs found

    Hemodynamic monitor for rapid, cost-effective assessment of peripheral vascular function

    Get PDF
    Worldwide, at least 200 million people are affected by peripheral vascular diseases (PVDs), including peripheral arterial disease (PAD), chronic venous insufficiency (CVI) and deep vein thrombosis (DVT). These diseases have considerable socioeconomic impacts due to their high prevalence, cost of investigation, treatment and their effects on quality of life. PVDs are often undiagnosed with up to 60% of patients with PVD remaining asymptomatic. Early diagnosis is essential for effective treatment and reducing socioeconomic costs, particularly in patients with diabetes where early endovascular treatment can prevent lower extremity amputation. However, available diagnostic methods simply do not meet the needs of clinicians. For example, duplex ultrasound or plethysmography are time-consuming methods, costly and require access to highly trained clinicians. Due to the cost and time requirements of such methods, they are often reserved for symptomatic patients. On the other hand, the Ankle Brachial Index (ABI) test is cheap but has poor sensitivity for those patients with diabetes and the elderly, both growing high-risk populations. There is an urgent need for new diagnostic tools to enable earlier intervention. Researchers at the MARCS Institute have developed a novel hemodynamic monitor platform named HeMo, specifically for the assessment of peripheral blood flow in the leg. This development aimed to provide a fast and low-cost diagnosis of both peripheral arterial disease and chronic venous insufficiency. This work first provides a comprehensive literature review of the existing non-invasive diagnostic devices developed since 1677 to highlight the need of development of a new blood monitoring tool. Second, it presents the simplified circuit of the HeMo device and provides series of pilot experiments with HeMo demonstrating its potential for diagnosis of both peripheral arterial disease and chronic venous insufficiency. Third, it presents a quantitative characterisation of the electrical behaviour of the electro-resistive band sensors with the development of an expansion/contraction simulator rig and using spectral analysis. The characterisation of the electro-resistive band was essential to understand the nonlinear electrical behaviour of such sensors and would be of interest for other users and uses of the electro-resistive band sensors. However, in another perspective this sinusoidal linear stretching movement and the presented method shows an example for the application of the presented rig, highlighting that the same technique could be used for characterisation of similar stretchable sensors. Fourth, it shows data from a healthy population, assessing the performance of HeMo compared to light reflection rheography (LRR sensor-VasoScreen 5000) for the assessment of venous function. Fifth, it presents human study data where the performance of HeMo is compared to photoplethysmography (PPG sensor-VasoScreen 5000) for the evaluation of the arterial function. Overall, the presented work here, steps toward development of the final version of a novel hemodynamic monitoring device, and its validation

    Towards low-cost non-invasive assessment of peripheral vascular function

    No full text
    A novel device, HeMo, has been developed that allows for a low-cost and highly convenient means of assessing peripheral vascular function. HeMo consists of a fabric cuff worn on the lower leg, incorporating two contactless electro-resistive sensors, which measure blood volume changes in millilitres

    HeMo : towards an inexpensive wearable peripheral blood flow monitoring device

    No full text
    In a previous embodiment, HeMo used a combination of electro-resistive bands and electrical impedance tomography to visualize peripheral blood flow. In this paper we present a new embodiment, which operates without the need of electrical impedance measurement. This modification simplifies the device, making it electrode-less and further reduces the power requirements. The simplified HeMo front end is assembled on a 14mm×28mm printed circuit board, requires only 1100 μA (when powered at 4.5 V) and has proven capable of measuring limb blood volume changes and arterial blood flow directly in ml during the most common peripheral vascular disease diagnostic tests. While we are still in the process of evaluating the use of HeMo in a clinical setting, we present the simplified circuit together with a set of preliminary measurements performed on a healthy volunteer to assess peripheral vascular function

    A wearable contactless sensor suitable for continuous simultaneous monitoring of respiration and cardiac activity

    Get PDF
    A reliable system that can simultaneously and accurately monitor respiration and cardiac output would have great utility in healthcare applications. In this paper we present a novel approach to creating such a system. This noninvasive, low power, low cost, contactless sensor is suitable for continuous monitoring of respiration (tidal volume) and cardiac stroke volume. Furthermore, it is capable of delivering this data in true volume (i.e., mL). The current embodiment, specifically designed for sleep monitoring applications, requires only 100 mW when powered by a 4.8 V battery pack and is based on the use of a single electroresistive band embedded in a T-shirt. Here, we describe the implementation of the device, explaining the rational and design choices for the electronic circuit and the physical garment together with the preliminary tests performed using one volunteer subject. Comparison of the device with a commercially available spirometer demonstrates that tidal volume can be monitored over extended periods with a precision of ±10%. We further demonstrate the utility of the device to measure cardiac output and respiration effort
    corecore